1@ Available online at www.sciencedirect.com
— JOURNAL OF

g@ SCIENCE@DIRECT. GEOMETRY anp
PHYSICS

ELSEVIER Journal of Geometry and Physics 49 (2004) 231-247

www elsevier.com/locate/jgp

Complete space-like hypersurfaces in locally
symmetric Lorentz spaces

Jin Ok Bael, Qing-Ming Chend, Young Jin Sulg*

2 Department of Mathematics, Kyungpook National University, Taegu 702-701, South Korea
b Faculty of Science and Engineering, Department of Mathematics, Saga University, Saga 840-8502, Japan

Received 9 September 2002; received in revised form 12 May 2003

Abstract

The purpose of this paper is to study complete space-like hypersurfaces with constant mean
curvature in a locally symmetric Lorentz space satisfying some curvature conditions. We give
an optimal estimate of the squared norm of the second fundamental form of such hypersurfaces.
Furthermore, the totally umbilical hypersurfaces are characterized.
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1. Introduction

Let M;" be anm-dimensional connected semi-Riemannian manifold of index0). It
is called a semi-definite space of indexin particular,M7" is called a Lorentz space. A
hypersurfacé/ of a Lorentz space is said to be space-like if the induced metrid érom
that of the Lorentz space is positive definite. When the Lorentz spgtés of constant
curvaturec, we call it Lorentz space form, denoted b} (c).

It is well known that a maximal space-like entire graph in Minkowski spﬁ@él is
a linear hyperplang,7]. As a generalization of the result above, Chouque-Bruhat et al.
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[10] and Ishiharg11] proved that totally geodesic hypersurfaces are the only complete
space-like maximal hypersurfacesl\iﬁl’“(c), c>0.

On the other hand, it was pointed out by Marsdan and T[f&rand Stumble§l19] that
space-like hypersurfaces with constant mean curvature in arbitrary spacetime get interested
in the relativity theory. Space-like hypersurfaces with constant mean curvature are conve-
nient as initial hypersurfaces for the Cauchy problem in arbitrary spacetime and for studying
the propagation of gravitational radiation. Hence, complete space-like hypersurfaces with
constant mean curvature in a Lorentz space fMﬁﬁ‘ L(c) are extensively investigated by
many differential geometers in various view points; for example, Akutagajvand Ra-
manatharj18] proved complete space-like hypersurfaces with constant mean curyature
in the de Sitter spac&;™(c) must be totally umbilical i?H? < 4(n — 1)c whenn > 2,
andH? < 1 whenn = 2. For further development in these directions, [826,12,14,15]
and so on.

As standard models of complete space-like hypersurfaces with constant mean curvature
in M7 *1(c), there are four classes of complete hypersurfate@1) x " *(c2), RF x
" K(c2), Hx(c1) x R** andH¥(c1) x H"*(¢p), wherek = 0, 1, ..., n, according to
¢ > 0, =0 or <0. In particular,H(c1) x §" 1(c») is called a hyperbolic cylinder and
H"1(c1) x SY(c»p) is called a spherical cylinder.

It is important and natural to study complete space-like hypersurfaces with constant
mean curvature in the more general Lorentz spaces since they have important meaning in
the relativity theory. First of all, we shall consider several examples of Lorentz spaces which
are not Lorentz space forms.

Example 1. We consider the semi-Riemannian product manifold
C
H]f (——l) x M"™ 1K (c9), c1 > 0.
n
Its sectional curvature is given by
c1 Cc1

K'(u1, up) = - K'(ug, up) = - K'(ug,u;) =0, K'(ur,us) =c,

wherea, b, ... =2,... k,r,s,...=k+1,...,n+ 1, andus andu,, u, denotes time-like
and space-like vectors respectively.

Example 2. We consider the semi-Riemannian product manifold
RY x sm+k().
Its sectional curvature is given by
K/(ula ug) =0, K/(uaa up) =0, K/(uj_, u) =0, K/(M,«, ug) =1,

wherea, b,... = 2,...,kandrs,... = k+1,...,n + 1. In particular,R} x $"(1) is
so-calledEinstein Static UniverseOf course, it is not Lorentzian space form.

Next, we shall show a general example of Lorentz space which is ¢adliedrtson—Walker
spacetime
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Example 3. Let I denote an open interval dt% and f > 0 a smooth function defined
on the intervall. For a three-dimensional Riemannian manifold of constant curvature
¢ =—1,0, 1, we construct a Lorentz spakc, f) as the warped product

Mc, ) =1 x; M3c),

which is calledRobertson—Walker spacetinigee[17], pp. 343-345). Thus, by a direct
computation, we have that its sectional curvature is given by

K'(v, w) <f />2+ °
v,w)=1[— —

f f?
for any space-like vectonsandw and

4

K'(eg, v) = n

for any time-like vectoeg and any unit space-like vector

In this paper, we shall consider+ 1-dimensional Lorentz spacas of index 1. LetV’,
K’ and R’ denote the semi-Riemannian connection, sectional curvature and the curvature
tensor onM’, respectively. For constantg, c, andcs, we consider Lorentz spaces which
satisfy the following:

(1) for any space-like vector and any time-like vectow

K'(u,v) = -2,
n
(2) for any space-like vectotsandv
K'(u,v) > c2,
® VR

n
WhenM' satisfies conditions (1) and (2), we shall say thfasatisfies conditions).
When M’ satisfies conditions (1)—(3), we shall say th#tsatisfies condition«x).

Remark 1. It can be easily seen that if the Lorentz spafds locally symmetric, then the
condition (3) holds.

Remark 2. The Lorentz space fOI’I’Merl(c) satisfies the conditions) and ), where
—(c1/n) =c2 =c.

Remark 3. TheExamples 1 and 2atisfy the conditions«) and =) and theExample 3
also satisfies the conditiong)(and &) if we choose an appropriate functigh(see[17],
pp. 343-345).

In [9,20], authors investigated complete space-like hypersurfatésa Lorentz space
satisfying condition#£x). They estimated the squared norm of the second fundamental form
of M under some conditions. In this paper, we shall prove the following theorem.
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Theorem 1. Let M be a complete space-like hypersurface with constant mean curvature H
in ann + 1-dimensional locally symmetric Lorentz spadé satisfying the conditioi):

(1) If n2H? < 4(n — 1)c, wherec = 2cp + (c1/n), thene > 0, S = nH? and M is totally
umbilical, where S denotes the squared norm of the second fundamental form of M

(2) If n2H? = 4(n — 1)c, thenc > 0 and eitherS = nH? and M is totally umbilical or
supS = nc.

(3) If n”?H? > 4(n — 1)c andc < 0, then eithers = nH? and M is totally umbilicalor

nH? < supS < Smax.

whereSmax = n/2(n — D)[n?H? — 2(n — 1)c + (n — 2)|H|{n?*H? — 4(n — 1)c}/3).
(4) If n?H? > 4(n — 1)c andc > 0, then eitherS = nH? and M is totally umbilicalor

S > SupsS > nH2, if H? > ¢,
max = P > Smin, if H2 <.

whereSmin = n/2(n — 1)[n?H? — 2(n — 1)c — (n — 2)|H|{n?H? — 4(n — 1)c}/3).
S= 5 " T [n2H? — 2(n — 1)c + (n — 2)|H|{n?H? — 4(n — 1)}V,
n—
if and only if M is an isoparametric hypersurface with two distinct principal curvatures
one of which is simple

(5)

Theorem 2. Let M be an n(n > 2) dimensional complete space-like hypersurface with
constant mean curvature H in an+ 1-dimensional locally symmetric Lorentz spalé
satisfying the conditiof). If the sectional curvature of M is not less thaticz + (c1/n)),
then ¢ > 0, wherec = 2¢3 + (c¢1/n). Furthermore if H? > cand

n

22 _ _ 2,2 3 12
2(n—1)[”H 2(n — 1)c+ (n — 2)|H|{n’H? — 4(n — 1)c}¥?],

S <

hold, then M is totally umbilical

Remark 4. We should notice that wheM’ is a Lorentz space forrMi’“(c), a part of the
similar results inTheorems 1 and ®as obtained by Cheng and Nakagd®éiand Ki et al.
[12].

Remark 5. Euclidean spac®&” which is defined by1 = x,.12 + 7 is a totally umbilical
space-like hypersurface S{*l(c) in R’f“z, where{x1, ..., x,42} is the natural coordinate

system inR} 2. The mean curvatur#l satisfiesH? = c.

Remark 6. We consider a family of space-like hypersurfagigcy) x $"~* (c2) of §§7(c)
which is defined by

H*(c1) x §"*(c2)

1 1
= {(x, y) €S e) c RIT2 = REFL s R 2 = -2 y2 = _} ,
1
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wherec1 < 0,¢2 > 0 and Ye1 + 1/c2 = 1/c. Whenk > 1, it is not of non-negative
curvature. The number of distinct principal curvatures of such a hypersurface is exactly
two. A principal curvature is equal t@& — ¢1)¥/? with the multiplicity k and the other is
equal to(c — ¢2)/2 with multiplicity n — k. We can prove that

1

< ———[n{n?H% = 2(n — Dc} + (n — n|H|{n?H? — 4(n — D)c}?],
2(n —1)

andH? > c if we choose appropriate valuesandc. Hence, the assumption on sectional

curvature inTheorem J4s essential.

Remark 7. Hyperbolic cylindetH(c1) x " ~1(c») has non-negative curvature and satisfies
H? > ¢ if we choose appropriate values andc,. The squared norns of the second
fundamental forna satisfiesS = 1/2(n — 1)[n{n?H? — 2(n — 1)c} + (n — 2)n|H|{n?H? —

4(n — 1)c}*?]. Hence, the estimate ¢fin Theorem Js best possible.

2. Preliminaries

First of all, we review basic formulas on space-like hypersurfaces in a Lorentz space. Let
(M, g") be an(n + 1)-dimensional Lorentz space, i.e., an indefinite Riemannian manifold
of index 1. Throughout this paper, manifolds are always assumed to be connected and
geometric objects are assumed to be of c{@¥s For any pointc in M’ we choose a local
field of orthonormal frameges} = {eo, e1, ..., e,} 0N a neighborhood of. Here and in
the sequel, the following convention on the range of indices will be used throughout this
paper, unless otherwise stated:

A/B,...=01,...,n, i j...=1...,n.
Let {wa} = {wo, w1, ..., w,} denote the dual frame fields ¢4} on M’. Then metric
tensorg’ of M’ satisfiesg’(e4, ep) = €48aB, Whereeg = —1 ande; = 1. The canonical
formsw, and the connection formsag of M’ satisfy the structure equations:
dw 4 +Z€BwAB/\CUB =0, was+wsa=0, (2.1)
dwag + Z €CWAC A WCB = 2, (2.2)
2, :—}ZGCeDR/ piwCc N\ Wp (2 3)
AB 2 ABC ) :

where2’ = £, (resp.Rjgcp) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tenBgrof M’. The component®, of the Ricci
tensor and the scalar curvatufeare given by

B

F'=> eaRan (2.5)
A
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respectively. The componenis,;~p,  of the covariant derivative of the Riemannian cur-
vature tensoR’ are defined by

/
Z €ERpBCD EVE
E

= dRpgcp— Z £ (RepepweAtRapcpwEs + Ragepwec + Rapcpwep).  (2.6)
E

Aplane sectio?’ of the tangent spadg M’ of M’ at any point is said to b&non-degenerate
provided thag,| P’ is non-degenerate. It is easily seen tRais non-degenerate if and only
if it has a basigu, v} such thag(x, u)g(v, v) — g(u, v)2 # 0. The sectional curvature of the
non-degenerate plane sectiBhspanned by andv is denoted by’ (P’) = K'(u, v). The
semi-definite Riemannian manifoM’ is said to be ofonstant curvaturé its sectional cur-
vatureK’(P") is constant for allP’ and for all points of\/’. M’ is calleda semi-definite space
formif it is of constant curvature. Am-dimensional semi-definite space form of constant
curvaturec and of indexs is denoted by" (¢). The standard models of semi-definite space
forms are the following three kinds: the semi-definite Euclidean sRéc¢he semi-definite
spherical spacsg!” (c) or the semi-definite hyperbolic spa&’ (¢), according ta- = 0, >0
or <0. The Riemannian curvature tenR&gcp of the semi-definite space forM." (c) is
given by

RpaBcD = ce4€p(8apdBC — SACIBD)- (2.7)

Now, let(M’, g") be an(n + 1)-dimensional Lorentz space and Mtbe anz-dimensional
space-like hypersurface @ff’. We choose a local field of orthonormal framgg} =
{eo, e1..., ey} insuch away that restricted i, e1, . . ., ¢, are tangent td/ and the other
is normal toM. Namely,eq, ..., ¢, are space-like vectors and the otlagris a time-like
vector. Let{w,} be its dual frame field. Then the indefinite Riemannian metric tegisuir
M'is given byg’ = >, eawa ® wa. The connection forms o’ are denoted bywag,
whereeg = —1 ande; = 1.
Restricting these forms to the space-like hypersurfdde M’, we have

wo = 0, (2.8)
and the induced metrig of M is given byg = > w; ® w;. From(2.1) and (2.8jnd the
Cartan lemma, we have

woi = Zhija)j, hij = hji. (2.9)
J

The quadratic forna = — Zi’j hijw; ® ; @ eg With values in the normal bundle arffl =
1/n 27:1 hjj are calledsecond fundamental forandmean curvaturef the hypersurface
M, respectively. When principal curvaturesMfare constant)/ is calledisoparametric
The connection forméwjj} of M are characterized by the structure equationof

dw; + Zwij ANwj=0, oj+wj=0, (2.10)

J

1
dwij + Zwik A wyj = $2j, Qjj = —5 Z Riji i A wy. (2.112)
k k.l
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From(2.3) and (2.11)we have Gauss equation
Riji = Rijq — (hithj — hikhj)). (2.12)

Componentsj; of Ricci tensor and scalar curvaturef M are given by

n n
Rj = Z Rl/<ijk — nHh; + Zhikhkj» (2.13)
k=1 =
n
Jk=1

whereS = 37", 4 h? denotes the squared norm of the second fundamental fofeh of
By taking exterlor differentiation of2.9) and definingijj by

Zhukwk = dhlj Z(hk]wkl + hlkwkj) (2-15)

we have Codazzi equation
hijk — hiky = Ré)ijk' (2.16)
Similarly, defininghij by

Zhijkl w; = dhijj — Z(hukwn + hikwij + hij o), (2.17)
1 1

and differentiating2.15)exteriorly, we have

oo )

k

1
= — Xk: dhy A wii + hik § — Xl:wm A @) — > 12: Riiimw; A wpy
.m

1
+ dhik A wij + hik § — 21: Wk A = ZX: Rijimwr A o
,m

Hence, we obtain Ricci formula for the second fundamental fori pf
hij — hijik = — Z(hirRrjkl + hjr Ryiki)- (2.18)
r

Now let us denote, byR), g, g+ COvariant derivative oR) g~ Then, restricting onv/,
Ré)ijk‘l is given by

Roi: = Roj + Rowoehit + Rojohid + ) R, (2.19)
m
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whereRE)ijkl denote the covariant derivative BBijk as a tensor o so that
Z Rojjq @1 = dRgj — Z Royjwii — Z Rojwij — Z Rgjj @ik
I I I I
Next, we compute the Laplaciaiijj defined by
Ahjj = Zhijkk- (2.20)
k
From(2.16) and (2.18it follows that

Ahij =Y higk+ Y Rojx = D _ hkiik + Y Rojiu
k k k k

= Z hiikj — Z(hklRlijk + hil Rikjk) + Ré)ijkk} .
k ]

Fromhikj = hikij + R6kikj’ we obtain

Ahij =Y " hikij + Y _ (R + Royi) — O _ (ki Rk + hit Riggi)-
K k ol

By (2.12) and (2.19and the above equation, we obtain

Ahij = b+ Y (Rojier + Rowi ) — D (hikR6i0k + hRoio + D hklRﬁ;k>
k k k 1

_ Z <hlj R6k0k+hkj RE)kiO + Z h]| Rikik) — Z(R{kjk — ]’l|khjk —+ hkkhﬂ)hil
k ! Kl
- Z(Rfijk — hwhij + hijhik) hi

k.l

=Y Ik + Y (Rojjer + Roiw ) — D (hkkRaijo + hij Royor)
% P %

k.l l

The following Generalized Maximum Principle of Om¢1i6] and Yau[21] will play an
important role in the proof of our Theorems ((8,20]).

Generalized Maximum Principld_et M be a complete Riemannian manifold whose
Ricci curvature is bounded from below a#. Let F be aC2-function bounded from above
on M, then, for any > 0, there exists a point € M such that

IVF(p)| < €, AF(p) <e and supF—e < F(p). (2.22)
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3. Locally formulas

In this section, we assume th#t’ is an(n + 1)-dimensional Lorentz space satisfying
condition éx) andM is a space-like hypersurface with constant mean curvatueg.ifirst
of all, we calculate the Laplacian of the squared nérof the second fundamental foren
of M.

EAS = EA Zhij = Z(hijkhij)k = Zhijk + Zhijkkhij- (3.1
ij

i, j.k i),k ijk

By (2.21) we have

1 2
ZAS8 = D hEAY | D (Rojo.; + Roj) — Y CrikRaijo + hij Riyr)

i jk ij | & X
— Y (2hkRjji + hij Ry + hi Rigy) — nH Y hithy + Shy | hyj. (3.2
j j
k.l !
Thus, we have
1 2
ZA8 = D hbc+ Y hi(Ryyie; + Roj) — | D NH Rgio + S Y Ry
ik ik ij X
— Y 2(hijhuiRjj + hiihij Rig) — nHg + 52, (3.3)
ikl

wherehs = Z?:l A? anda ;'s are principal curvatures i .
Next, we will choosges, .. ., e,} such that

hij = A;djj. (3.4)

By definition, we see
S=Y A
i
Puttingu; = A; — H, we have
Zuj:O, Z/L?ZS—HHZ. (3.5)
J J
Therefore, for any

O — 17 = "5 k), 3.6)
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Since
> (R + Roije )P
i,j.k
= > 3 (Roujie ; + Rojier)
ik
n—1
>-y |:|H| +4/ — (- nH2):| \/Z R + \/Z R
k J J
n—1 ,
> -2Jn||H|+,/——(S —nH) | VR,
n
we obtain

, 2 n—1
> (R j + Roij,0hiy = “Tn [IHI (S - nHZ)} c3. 3.7)

ijk

By (3.4)and condition £), we have

— | D_nHhj Rgjo + 5 D Royor
ij k
1
== nHy (ngko—s > Rbm) =) (S—nHA) Ry = > (S — nHA) ==,
k k k k
Hence it follows that
— | Do nHRiRGi0+ 8D Ryyor | = ca(S — nH?). (3.8)
iJ k

Since
— > (hihwRjye + hihij Rigo)
i,k
2 2
= = 2 OjhRig — Mg Rigi) = = D _(hjhe = 1) Rige
I

Jk

1 c2
=52 (= Ry = 5 D () — A%,
J.k

jk
we obtain
c2
— Y (hijhuRj + hihi Rige) = > > (0 = )% = c2(nS— n?H?). (3.9)
i, jk,l ik

Thus, substituting3.7)—(3.9)into (3.3), we can prove the following lemma.
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Lemmal. LetM’ be an(n + 1)-dimensional Lorentz space satisfying the condifior).
If M is a space-like hypersurface with constant mean curvature M'irthen we have

Lasgs 2 |H|+,/"_1(S nH2)
- - — (S - c
2 - Jn n 3

+(2nC + ¢1)(S — nH?) + (5% — nHhy). (3.10)

In particular, if M’ is locally symmetricwe have

%AS > (2nG + ¢1)(S — NH?) + (5% — nHhy). (3.11)

4. Proofsof Theorems

This section presents proofs of our theorems.

Proof of Theorem 1. SinceM’ is an(n + 1)-dimensional locally symmetric Lorentz space
satisfying the conditions), that is, for constants; andcy, we have

K'(u,v)=——= (4.1)
n
for any space-like vectar and any time-like vector and
K'(u1, u2) > c2 (4.2)

for any space-like vectors, anduy. Hence, we have, fror8.11)

%AS > (2nG + ¢1)(S — NH?) + (5% — nHhy). (4.3)
Let B =Y ;pu?andBsz = Y, u. We have

B=S—nH? B3=hs—3HB—nH. (4.4)
Hence, we have

%AB > (2nG + ¢1) B + (B + nH?)? — nH(B3 + 3HB + nHS), (4.5)

becausdd is constant.
Letay, ..., a, be real numbers satisfying; a; = 0 and)_; al? = B, then we can prove

Za?< n—2
i

3/2
s b (4.6)

and the equality holds if and only if at least- 1 of theg;’s are equal.
Therefore, we infer

1
EABEB{B— n|H|Bl/2+nc—nH2}, 4.7)

n—2
Jnn —1)



242 J. Ok Baek et al./ Journal of Geometry and Physics 49 (2004) 231-247

wherec = 2c, + (c1/n). SinceM’ satisfies the condition] and M has constant mean
curvature, from(2.13) we know that the Ricci curvature & is bounded from below. Since
we do not know whethef is bounded yet, we consider a functiéndefined by, for any
positive constant, F = —1/(+/B 4 a). We know thatF is bounded because & > 0.
According to the Generalized Maximum Principle of On{@6] and Yau21] in Section 2
for anye,, > 0, there exists a poin,, € M such that

AF(py) < €m, IVF|(pm) < €m, SUPF — €, < F(pm). (4.8)
Since
Gl VE 1 aB 3 |vBP
2(B+a)®? 2(B+a)¥? 4(B+a)d?

we have

IVF| = 3IFI}| VB,
and

LIFI*AB = |FIAF + 3|VF|.
From(4.8), we infer

SIF(pum)*AB(pm) < |F(pm)lem + 363,
For any positive constant 8 ¢ < 1, lettinge,, — 0, we know that there exists a positive
integermg such thatwhem > mo, |F(py,)|em +3e§1 < e becausé is a bounded function.
According to(4.7) and the above inequalities, we infer

(11— €)B?(py) — n|H|B¥?(py) + (nc — nH? — 2a€) B(p,,) — a’e < 0.

n—2
Jnn—1)
Thus, we know thafB(p,,)} is a bounded sequence. Since JiM F(p,;,) = SUPF =
—inf(1/+/B+ a) = —(1/4/SUpB + a), we have lim},_, oo B(p;») = supB from the defini-
tion of F. Hence,B is bounded. Since ande are any positive constants, we infer

supB {supB - n|H|supBY? + nc— nHZ} <o. (4.9)

n—2
Jnn —1)
If n2H? < 4(n — 1)c holds, then we have > 0 and

-2
SUpB — ———~__n|H|supBY2 4+ nc— nH? > 0.
nn—1)

Hence, we obtain sup = 0, that is,B = 0. Thus, we infer thaf = nH? and M is totally
umbilical.
If n2H?2 = 4(n — 1)c holds, then we have > 0 and

SupB — n—_zn|H|supB1/2 +nc— nH?
Jnn —1)
) 2
— (supp¥2 - "< _ H) > 0.
(suppt2 = 5 A= uim) =
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Hence, fron{4.9), we have su = 0, thatis,B = 0if supBY2 £ (n—2)/(2/n(n — D))n
|H|. Thus, we have that eithé® = 0, that is,§ = nH? and M is totally umbilical, or
SUpBY? = (n — 2)/(2y/n(n — 1))n|H|, namely, sups = nc. Thus, we complete the proof
of (2) in Theorem 1

If n2H2 > 4(n — 1)c andc < 0 hold, we know

n—2 1
SUPB — —————n| H|supB /2 4 nc— nH?
2 2
= (supB" — By (supB™ - Biigo,
1/2 _ 2772 1/2 _
where B = ((n — 2n|H| — ny/n2H2 — &n — 1)c)/2/n(n — 1) and Bpax =

((n — 2n|H| + n\/n2H2—4(n—1)c)/2~/n(n —1). Since Brln/lﬁ = ((n — 2)n|H|

— ny/n2H? — 4(n — 1)c)/2/n(n — 1) < 0 holds wherc < 0, from (4.9), we infer ei-
ther supB = 0, in this caseM is totally umbilical, or 0< supBY2 < ((n — 2)n|H| +
ny/n2H2 — 4(n — 1)c)/2/n(n — 1). Hence, we know that the assertion (3)Tineorem 1
is true fromS = B + nHZ.

If n2H2 > 4(n — 1)c andc > 0 hold, we also have

SupB — n|H|supBY? + nc — nH?

n—2
Jnn—1)
= (supBY? — BY2)(supBY? — BYZ.

() WhenH? > ¢, sinceB'2 = ((n—2)n|H| —ny/n2H2 — 4(n — 1)¢)/2:/n(n — 1) < 0

holds, from(4.9), we infer either su = 0, in this caseM is totally umbilical, or
0 < supBY2 < ((n — 2)n|H| + ny/n?H2 — 4(n — 1)c)/2/n(n — 1).

(b) WhenH?2 < ¢, we haveBY2 = ((n—2)n|H|—ny/n2HZ — 4(n — 1)c) /ZW >
0. Hence, we have, frofd.9), supB = 0, in this caseM is totally umbilical, oerIn <

supBY? < Bmax. Thus, we infer that the assertion (4)Theorem 1is true because of
S = B+ nH2.

If S =n/2(n — D[n2H% — 2(n — Ve + (n — 2)|H|{n?H? — 4(n — 1)c}¥/?] holds, we
know that these inequalities in the prooflafmma land(4.6)are equalities ansl > nH?.
Hence, we have?H?2 > 4(n — 1)c from (1) in Theorem 1Thus, we can infer that — 1
of the principal curvatures; are equal. Since the mean curvatiéfds constant and is
constant, we infer that principal curvatures are constamfomhus,M is an isoparametric
hypersurface with two distinct principal curvatures one of which is simple. This completes
the proof ofTheorem 1 O

Proof of Theorem 2. According to Gausequation (2.12)we have
Rig = Rj — (hjjhic — hikhig) = Rjq — hjjhik = Rjgq — X jAk.
Hence, we obtain
Rj/kkj = Rjkkj + )\.j}\.k. (4.10)
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Therefore
~2 ) highia(Rje — hiihij Rigo)
i jk.l
= =2 MRy — MR = =2 ) Cjha—=2P) Rige= Y (hj=24)* Rie
J-k J-k Jk

1 1

=3 > 00 = M) Rig + > > (= M) (Riik + A jAx)

ik ik

€2 2, 1 2P 4 g

> ij(x =M+ S ij@ j = M2 (Ruik + 2 i) (4.11)

By making use of the same proof as in the prooLemma 1 we have

1 1
SAS = (NG + e1)(S = NH?) + (8% — nHhg) + 5 3 () — 10 *(Rigi + A j40)-

Jik
(4.12)
Since the sectional curvature &f is not less thar-(c2 + c¢1/n), we have
1
5 D0 = M0 (R + 1 j4i)
ik
=52+ =) Z(A,- — %+ 3 Z(x,- — M) hjhk
Jik Jik
- (cz n 9) (NS— n?H?) + (nHhs — 52). (4.13)
n

Thus, we infer, from(4.12) and (4.13)

1 1
SASZ(C + c1)(S — nH) + (8% = nHhg) + 5 3 (1 — 2 *(Rejic + 2 24) = 0.
Jik
(4.14)

FromTheorem 1we know thatS is bounded. Applying the Generalized Maximum Principle
to S, we have that there exists a point sequefiggl € M such that

lim sup AS(pw) <0, lim |VS|(p,) =0, lim S(p,) =supS. (4.15)
m-—0o0 m-—0o0

m—0oQ

Hence, we have

lim Z(/\ —0? { R+ (c2+ )} () = (4.16)
and
lim (= M) Rigy = c2 lim % "(h; = 1% (4.17)
ok ik
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Since the functior$ = Zj A? is bounded{x ;(p,)} is a bounded sequence for aiyrhus,
we can assume

'Ji_rpoo)»j(pm) = )‘J'O (418)

for any j, if necessary, we can take a subsequencg. dip,,)}. Hence, from(4.10) and
(4.17) we have

lim iju j = 40 Rigk(pm) = lim ij(A j = M2 = 1jhe) (pm)- (4.19)
) J

Therefore, we infer, frong4.16) and (4.19)
i A2 (e — ) —
rJiT‘oo_Xk:(’\f )2 — xjhi) = 0. (4.20)
Ji

If Ajy # Ak, from (4.17) we have
m“L“OO(CZ — LA (Pm) = ,Jilnw(Rf(ijk — A jAk) (Pm)
. c1
= lim Ryjjk(pm) = — (62 + —) .
m— 00 n
Hence, in this case, we obtain
lim (¢ —AjA)(pm) = 0. (4.21)
m—0o0

Thus,(4.20) and (4.21yield, for anyi and j

Nim (=hikj(pm) + )i = ) (pm) = 0. (4.22)
By (4.18) and (4.22)ve get

(=Righjo + ) (hig — 2jg)? =0 (4.23)
for anyig andjo. By the simple algebraic calculation, itis clear that at most twa.gff's are
distinct. If all of {1 ;,}'s coincides with each other, then, frq@h21) we haver > A?O > 0.

If two of the { ;,}'s are distinct, which are denoted byandu (A # w). By (4.23) they
satisfy

Now let us denote by ands the number of indices ;(p,,) — A andX;(p,) — u,
respectively. Then we want to assert that 1 ors = 1.

In fact, if r > 2 ands > 2 hold, it follows fromr > 2 that there are distinct indiceésind
j such that;(p,) — A andA j(p,) — A (m — oo) and hence we have

lim (—ahj+¢) =A% +c¢, fori#j.
m—00

By (4.18) and (4.21)we obtainc > A2 > 0. Similarly, we have > 2 > 0, which implies
that

c? > )»2;1,2.
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Onthe other hand, since we see that A in (4.24) itimpliesA2 = 2 = ¢. Furthermore,
it turns out to bex = 4. Because they are distinct, it yields= Aux = —12. Hence we
obtainA = u = 0. This is impossible because ot . Thus, our assertion is true.
Without loss of generality, we assume= 1. Sincern > 2, we haves > 2 and by the
above discussion we obtaind 12 < c. This finishes the proof of the first part of assertions
in Theorem 2
Next, we shall prove the second part of the assertioriEhimorem 2 From the above
assertion, together witf#.24)it follows that12 > c. Itis clear that we may assume that the
mean curvaturdd is positive. Therk andu are positive because of> 0 and(4.24) By
definingez andes by A2 = ¢ —c3andu? = ¢ —c4, respectively, we haug < 0,0 < ¢4 < ¢
and

. 1 1 1
(c—c3)(c—ca)=c? e, a + c_4 =< (4.25)

Since the mean curvatuf is constant, we obtain
NH=A4+mn—-LDu= (- 63)1/2 +m—=1(c— C4)1/2, AL =c.
Hence, we have
A2 —nHA + (n — e = 0.

SinceH? > ¢ holds, we conclude

¢ nH+n2H?2 —4(n — 1)c nH— /n2H? — 4(n — 1)c
— = and p = .

A= ,
" 2 2(n—-1)

(4.26)
Hence, we infer
S =22+ (n—Du?
= Z(n—l—l)[n{nsz — 2(n — 1)c} + (n — 2n|H|{n?H? — 4(n — De}Y/2).
(4.27)
It is a contradiction. Therefore
Ajo = A
for any j. This implies
supS = nH?.

FromS — nHZ = B > 0, we haveS = nH2. Hence M is totally umbilical. O
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