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Abstract

The purpose of this paper is to study complete space-like hypersurfaces with constant mean
curvature in a locally symmetric Lorentz space satisfying some curvature conditions. We give
an optimal estimate of the squared norm of the second fundamental form of such hypersurfaces.
Furthermore, the totally umbilical hypersurfaces are characterized.
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1. Introduction

LetMm
s be anm-dimensional connected semi-Riemannian manifold of indexs (≥0). It

is called a semi-definite space of indexs. In particular,Mm
1 is called a Lorentz space. A

hypersurfaceM of a Lorentz space is said to be space-like if the induced metric onM from
that of the Lorentz space is positive definite. When the Lorentz spaceMm

1 is of constant
curvaturec, we call it Lorentz space form, denoted byMm

1 (c).
It is well known that a maximal space-like entire graph in Minkowski spaceRn+1

1 is
a linear hyperplane[2,7]. As a generalization of the result above, Chouque-Bruhat et al.
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[10] and Ishihara[11] proved that totally geodesic hypersurfaces are the only complete
space-like maximal hypersurfaces inMn+1

1 (c), c ≥ 0.
On the other hand, it was pointed out by Marsdan and Tipler[13] and Stumbles[19] that

space-like hypersurfaces with constant mean curvature in arbitrary spacetime get interested
in the relativity theory. Space-like hypersurfaces with constant mean curvature are conve-
nient as initial hypersurfaces for the Cauchy problem in arbitrary spacetime and for studying
the propagation of gravitational radiation. Hence, complete space-like hypersurfaces with
constant mean curvature in a Lorentz space formMn+1

1 (c) are extensively investigated by
many differential geometers in various view points; for example, Akutagawa[1] and Ra-
manathan[18] proved complete space-like hypersurfaces with constant mean curvatureH

in the de Sitter spaceSn+1
1 (c) must be totally umbilical ifn2H2 < 4(n− 1)c whenn > 2,

andH2 ≤ 1 whenn = 2. For further development in these directions, see[3–6,12,14,15]
and so on.

As standard models of complete space-like hypersurfaces with constant mean curvature
in Mn+1

1 (c), there are four classes of complete hypersurfacesHk(c1) × Sn−k(c2), Rk ×
Sn−k(c2), Hk(c1) × Rn−k andHk(c1) × Hn−k(c2), wherek = 0,1, . . . , n, according to
c > 0, =0 or <0. In particular,H1(c1) × Sn−1(c2) is called a hyperbolic cylinder and
Hn−1(c1)× S1(c2) is called a spherical cylinder.

It is important and natural to study complete space-like hypersurfaces with constant
mean curvature in the more general Lorentz spaces since they have important meaning in
the relativity theory. First of all, we shall consider several examples of Lorentz spaces which
are not Lorentz space forms.

Example 1. We consider the semi-Riemannian product manifold

Hk
1

(
−c1

n

)
×Mn+1−k(c2), c1 > 0.

Its sectional curvature is given by

K′(u1, ub) = −c1

n
, K′(ua, ub) = −c1

n
, K′(ua, ur) = 0, K′(ur, us) = c2,

wherea, b, . . . = 2, . . . k, r, s, . . . = k + 1, . . . , n+ 1, andu1 andua, ur denotes time-like
and space-like vectors respectively.

Example 2. We consider the semi-Riemannian product manifold

Rk1 × Sn+1−k(1).

Its sectional curvature is given by

K′(u1, ua) = 0, K′(ua, ub) = 0, K′(u1, ur) = 0, K′(ur, us) = 1,

wherea, b, . . . = 2, . . . , k andr, s, . . . = k + 1, . . . , n + 1. In particular,R1
1 × Sn(1) is

so-calledEinstein Static Universe. Of course, it is not Lorentzian space form.

Next, we shall show a general example of Lorentz space which is calledRobertson–Walker
spacetime.
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Example 3. Let I denote an open interval ofR1
1 andf > 0 a smooth function defined

on the intervalI. For a three-dimensional Riemannian manifold of constant curvaturec,
c = −1, 0, 1, we construct a Lorentz spaceM(c, f) as the warped product

M(c, f) = I ×f M
3(c),

which is calledRobertson–Walker spacetime(see[17], pp. 343–345). Thus, by a direct
computation, we have that its sectional curvature is given by

K′(v,w) =
(
f ′

f

)2

+ c

f 2

for any space-like vectorsv andw and

K′(e0, v) = f ′′

f

for any time-like vectore0 and any unit space-like vectorv.

In this paper, we shall considern+ 1-dimensional Lorentz spacesM ′ of index 1. Let∇′,
K′ andR′ denote the semi-Riemannian connection, sectional curvature and the curvature
tensor onM ′, respectively. For constantsc1, c2 andc3, we consider Lorentz spaces which
satisfy the following:

(1) for any space-like vectoru and any time-like vectorv

K′(u, v) = −c1

n
,

(2) for any space-like vectorsu andv

K′(u, v) ≥ c2,

(3) |∇′R′| ≤ c3

n
.

WhenM ′ satisfies conditions (1) and (2), we shall say thatM ′ satisfies condition (∗).
WhenM ′ satisfies conditions (1)–(3), we shall say thatM ′ satisfies condition (∗∗).

Remark 1. It can be easily seen that if the Lorentz spaceM ′ is locally symmetric, then the
condition (3) holds.

Remark 2. The Lorentz space formMn+1
1 (c) satisfies the conditions (∗) and (∗∗), where

−(c1/n) = c2 = c.

Remark 3. TheExamples 1 and 2satisfy the conditions (∗) and (∗∗) and theExample 3
also satisfies the conditions (∗) and (∗∗) if we choose an appropriate functionf (see[17],
pp. 343–345).

In [9,20], authors investigated complete space-like hypersurfacesM in a Lorentz space
satisfying condition (∗∗). They estimated the squared norm of the second fundamental form
of M under some conditions. In this paper, we shall prove the following theorem.
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Theorem 1. Let M be a complete space-like hypersurface with constant mean curvature H
in ann+ 1-dimensional locally symmetric Lorentz spaceM ′ satisfying the condition(∗):

(1) If n2H2 < 4(n− 1)c, wherec = 2c2 + (c1/n), thenc > 0, S ≡ nH2 and M is totally
umbilical, where S denotes the squared norm of the second fundamental form of M.

(2) If n2H2 = 4(n − 1)c, thenc ≥ 0 and eitherS ≡ nH2 and M is totally umbilical, or
supS = nc.

(3) If n2H2 > 4(n− 1)c andc < 0, then eitherS ≡ nH2 and M is totally umbilical, or

nH2 < supS ≤ Smax,

whereSmax = n/2(n− 1)[n2H2 − 2(n− 1)c + (n− 2)|H |{n2H2 − 4(n− 1)c}1/2].
(4) If n2H2 > 4(n− 1)c andc ≥ 0, then eitherS ≡ nH2 and M is totally umbilical, or

Smax ≥ supS

{
> nH2, if H2 ≥ c,

≥ Smin, if H2 < c.

whereSmin = n/2(n− 1)[n2H2 − 2(n− 1)c − (n− 2)|H |{n2H2 − 4(n− 1)c}1/2].

(5) S ≡ n

2(n− 1)
[n2H2 − 2(n− 1)c + (n− 2)|H |{n2H2 − 4(n− 1)c}1/2],

if and only if M is an isoparametric hypersurface with two distinct principal curvatures
one of which is simple.

Theorem 2. Let M be an n(n > 2) dimensional complete space-like hypersurface with
constant mean curvature H in ann + 1-dimensional locally symmetric Lorentz spaceM ′
satisfying the condition(∗). If the sectional curvature of M is not less than−(c2 + (c1/n)),
then, c ≥ 0, wherec = 2c2 + (c1/n). Furthermore, if H2 ≥ c and

S <
n

2(n− 1)
[n2H2 − 2(n− 1)c + (n− 2)|H |{n2H2 − 4(n− 1)c}1/2],

hold, then M is totally umbilical.

Remark 4. We should notice that whenM ′ is a Lorentz space formMn+1
1 (c), a part of the

similar results inTheorems 1 and 2was obtained by Cheng and Nakagawa[6] and Ki et al.
[12].

Remark 5. Euclidean spaceRn which is defined byx1 = xn+2 + t is a totally umbilical
space-like hypersurface ofSn+1

1 (c) inRn+2
1 , where{x1, . . . , xn+2} is the natural coordinate

system inRn+2
1 . The mean curvatureH satisfiesH2 = c.

Remark 6. We consider a family of space-like hypersurfacesHk(c1)×Sn−k(c2)ofSn+1
1 (c)

which is defined by

Hk(c1)× Sn−k(c2)

=
{
(x, y) ∈ Sn+1

1 (c) ⊂ Rn+2
1 = Rk+1

1 × Rn−k+1 : |x|2 = − 1

c1
, |y|2 = 1

c2

}
,
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wherec1 < 0, c2 > 0 and 1/c1 + 1/c2 = 1/c. Whenk > 1, it is not of non-negative
curvature. The number of distinct principal curvatures of such a hypersurface is exactly
two. A principal curvature is equal to(c − c1)

1/2 with the multiplicity k and the other is
equal to(c − c2)

1/2 with multiplicity n− k. We can prove that

S <
1

2(n− 1)
[n{n2H2 − 2(n− 1)c} + (n− 2)n|H |{n2H2 − 4(n− 1)c}1/2],

andH2 ≥ c if we choose appropriate valuesc1 andc2. Hence, the assumption on sectional
curvature inTheorem 2is essential.

Remark 7. Hyperbolic cylinderH1(c1)×Sn−1(c2)has non-negative curvature and satisfies
H2 ≥ c if we choose appropriate valuesc1 andc2. The squared normS of the second
fundamental formα satisfiesS = 1/2(n−1)[n{n2H2 −2(n−1)c}+ (n−2)n|H |{n2H2 −
4(n− 1)c}1/2]. Hence, the estimate ofS in Theorem 2is best possible.

2. Preliminaries

First of all, we review basic formulas on space-like hypersurfaces in a Lorentz space. Let
(M ′, g′) be an(n+ 1)-dimensional Lorentz space, i.e., an indefinite Riemannian manifold
of index 1. Throughout this paper, manifolds are always assumed to be connected and
geometric objects are assumed to be of classC∞. For any pointx in M ′ we choose a local
field of orthonormal frames{eA} = {e0, e1, . . . , en} on a neighborhood ofx. Here and in
the sequel, the following convention on the range of indices will be used throughout this
paper, unless otherwise stated:

A,B, . . . = 0,1, . . . , n, i, j, . . . = 1, . . . , n.

Let {ωA} = {ω0, ω1, . . . , ωn} denote the dual frame fields of{eA} on M ′. Then metric
tensorg′ of M ′ satisfiesg′(eA, eB) = εAδAB, whereε0 = −1 andεj = 1. The canonical
formsωA and the connection formsωAB of M ′ satisfy the structure equations:

dωA +
∑

εBωAB ∧ ωB = 0, ωAB + ωBA = 0, (2.1)

dωAB +
∑

εCωAC ∧ ωCB = Ω′
AB, (2.2)

Ω′
AB = −1

2

∑
εCεDR

′
ABCDωC ∧ ωD, (2.3)

whereΩ′ = Ω′
AB (resp.R′

ABCD) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensorR′) of M ′. The componentsR′

CD of the Ricci
tensor and the scalar curvaturer′ are given by

R′
CD =

∑
B

εBR
′
BCDB, (2.4)

r′ =
∑
A

εAR
′
AA, (2.5)
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respectively. The componentsR′
ABCD;E of the covariant derivative of the Riemannian cur-

vature tensorR′ are defined by∑
E

εER
′
ABCD;EωE

= dR′
ABCD−

∑
E

εE(R
′
EBCDωEA+R′

AECDωEB + R′
ABEDωEC + R′

ABCEωED). (2.6)

A plane sectionP ′ of the tangent spaceTxM ′ ofM ′ at any pointx is said to benon-degenerate,
provided thatgx|P ′ is non-degenerate. It is easily seen thatP ′ is non-degenerate if and only
if it has a basis{u, v} such thatg(u, u)g(v, v)−g(u, v)2 �= 0. The sectional curvature of the
non-degenerate plane sectionP ′ spanned byu andv is denoted byK′(P ′) = K′(u, v). The
semi-definite Riemannian manifoldM ′ is said to be ofconstant curvatureif its sectional cur-
vatureK′(P ′) is constant for allP ′ and for all points ofM ′.M ′ is calleda semi-definite space
form if it is of constant curvature. Anm-dimensional semi-definite space form of constant
curvaturec and of indexs is denoted byMm

s (c). The standard models of semi-definite space
forms are the following three kinds: the semi-definite Euclidean spaceRms , the semi-definite
spherical spaceSms (c) or the semi-definite hyperbolic spaceHm

s (c), according toc = 0, >0
or<0. The Riemannian curvature tensorRABCD of the semi-definite space formMm

s (c) is
given by

RABCD = cεAεB(δADδBC − δACδBD). (2.7)

Now, let(M ′, g′) be an(n+ 1)-dimensional Lorentz space and letM be ann-dimensional
space-like hypersurface ofM ′. We choose a local field of orthonormal frames{eA} =
{e0, e1 . . . , en} in such a way that restricted toM, e1, . . . , en are tangent toM and the other
is normal toM. Namely,e1, . . . , en are space-like vectors and the othere0 is a time-like
vector. Let{ωA} be its dual frame field. Then the indefinite Riemannian metric tensorg′ of
M ′ is given byg′ = ∑

A εAωA ⊗ ωA. The connection forms onM ′ are denoted byωAB,
whereε0 = −1 andεj = 1.

Restricting these forms to the space-like hypersurfaceM in M ′, we have

ω0 = 0, (2.8)

and the induced metricg of M is given byg = ∑ωj ⊗ ωj. From(2.1) and (2.8)and the
Cartan lemma, we have

ω0i =
∑
j

hijωj, hij = hji . (2.9)

The quadratic formα = −∑i,j hijωi ⊗ωj ⊗ e0 with values in the normal bundle andH =
1/n

∑n
j=1 hjj are calledsecond fundamental formandmean curvatureof the hypersurface

M, respectively. When principal curvatures ofM are constant,M is calledisoparametric.
The connection forms{ωij } of M are characterized by the structure equation ofM:

dωi +
∑
j

ωij ∧ ωj = 0, ωij + ωji = 0, (2.10)

dωij +
∑
k

ωik ∧ ωkj = Ωij , Ωij = −1

2

∑
k,l

Rijklωk ∧ ωl. (2.11)
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From(2.3) and (2.11), we have Gauss equation

Rijkl = R′
ijkl − (hilhjk − hikhjl ). (2.12)

ComponentsRij of Ricci tensor and scalar curvaturer of M are given by

Rij =
n∑
k=1

R′
kijk − nHhij +

n∑
k=1

hikhkj, (2.13)

r =
n∑

j,k=1

R′
kjjk − n2H2 + S, (2.14)

whereS =∑n
i,j=1 h

2
ij denotes the squared norm of the second fundamental form ofM.

By taking exterior differentiation of(2.9)and defininghijk by∑
k

hijkωk = dhij −
∑
k

(hkjωki + hikωkj), (2.15)

we have Codazzi equation

hijk − hikj = R′
0ijk . (2.16)

Similarly, defininghijkl by∑
l

hijklωl = dhijk −
∑
l

(hljkωli + hilkωlj + hijlωlk), (2.17)

and differentiating(2.15)exteriorly, we have

∑
k

{
dhijk ∧ ωk + hijk

(
−
∑
l

ωkl ∧ ωl
)}

= −
∑
k


dhkj ∧ ωki + hjk


−

∑
l

ωkl ∧ ωli − 1

2

∑
l,m

Rkilmωl ∧ ωm




+ dhik ∧ ωkj + hik


−

∑
l

ωkl ∧ ωlj − 1

2

∑
l,m

Rkjlmωl ∧ ωm




 .

Hence, we obtain Ricci formula for the second fundamental form ofM:

hijkl − hijlk = −
∑
r

(hirRrjkl + hjrRrikl ). (2.18)

Now let us denote, byR′
ABCD;E, covariant derivative ofR′

ABCD. Then, restricting onM,
R′

0ijk;l is given by

R′
0ijk;l = R′

0ijkl + R′
0i0khjl + R′

0ij0hkl +
∑
m

R′
mijkhml, (2.19)
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whereR′
0ijkl denote the covariant derivative ofR′

0ijk as a tensor onM so that

∑
l

R′
0ijklωl = dR′

0ijk −
∑
l

R′
0ljkωli −

∑
l

R′
0ilkωlj −

∑
l

R′
0ijlωlk.

Next, we compute the Laplacian/hij defined by

/hij =
∑
k

hijkk. (2.20)

From(2.16) and (2.18)it follows that

/hij =
∑
k

hikjk +
∑
k

R′
0ijkk =

∑
k

hkijk +
∑
k

R′
0ijkk

=
∑
k

{
hkikj −

∑
l

(hklRlijk + hilRlkjk)+ R′
0ijkk

}
.

Fromhkikj = hkkij + R′
0kikj, we obtain

/hij =
∑
k

hkkij +
∑
k

(R′
0ijkk + R′

0kikj)−
∑
k,l

(hklRlijk + hilRlkjk).

By (2.12) and (2.19)and the above equation, we obtain

/hij =
∑
k

hkkij +
∑
k

(R′
0ijk;k + R′

0kik;j)−
∑
k

(
hjkR

′
0i0k + hkkR

′
0ij0 +

∑
l

hklR
′
lijk

)

−
∑
k

(
hijR

′
0k0k+hkjR

′
0ki0 +

∑
l

hjlR
′
lkik

)
−
∑
k,l

(R′
lkjk − hlkhjk + hkkhjl )hil

−
∑
k,l

(R′
lijk − hklhij + hljhik)hkl

=
∑
k

hkkij +
∑
k

(R′
0ijk;k + R′

0kik;j)−
∑
k

(hkkR
′
0ij0 + hijR

′
0k0k)

−
∑
k,l

(2hklR
′
lijk + hjlR

′
lkik + hilR

′
lkjk)− nH

∑
l

hilhlj + Shij . (2.21)

The following Generalized Maximum Principle of Omori[16] and Yau[21] will play an
important role in the proof of our Theorems (cf.[8,20]).

Generalized Maximum Principle. Let M be a complete Riemannian manifold whose
Ricci curvature is bounded from below onM. LetF be aC2-function bounded from above
onM, then, for anyε > 0, there exists a pointp ∈ M such that

|∇F(p)| < ε, /F(p) < ε and supF − ε < F(p). (2.22)
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3. Locally formulas

In this section, we assume thatM ′ is an(n + 1)-dimensional Lorentz space satisfying
condition (∗∗) andM is a space-like hypersurface with constant mean curvature inM ′. First
of all, we calculate the Laplacian of the squared normS of the second fundamental formα
of M.

1

2
/S = 1

2
/


∑

i,j

h2
ij


 =

∑
i,j,k

(hijkhij )k =
∑
i,j,k

h2
ijk +

∑
i,j,k

hijkkhij . (3.1)

By (2.21), we have

1

2
/S =

∑
i,j,k

h2
ijk +

∑
i,j


∑

k

(R′
0ij0;j + R′

0ijk;k)−
∑
k

(hkkR
′
0ij0 + hijR

′
0k0k)

−
∑
k,l

(2hklR
′
lijk + hljR

′
lkik + hliR

′
kjkl)− nH

∑
l

hilhlj + Shij


hij . (3.2)

Thus, we have

1

2
/S =

∑
i,j,k

h2
ijk +

∑
i,j,k

hij (R
′
0kik;j + R′

0ijk;k)−

∑

i,j

nHhijR
′
0ji0 + S

∑
k

R′
0k0k




−
∑
i,j,k,l

2(hijhklR
′
lijk + hlihijR

′
lkjk)− nHh3 + S2, (3.3)

whereh3 =∑n
j=1 λ

3
j andλj ’s are principal curvatures ofM.

Next, we will choose{e1, . . . , en} such that

hij = λiδij . (3.4)

By definition, we see

S =
∑
i

λ2
i .

Puttingµj = λj −H , we have∑
j

µj = 0,
∑
j

µ2
j = S − nH2. (3.5)

Therefore, for anyj

(λj −H)2 ≤ n− 1

n
(S − nH2). (3.6)
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Since∑
i,j,k

(R′
0kik;j + R′

0ijk;k)hij

=
∑
j,k

λj(R
′
0kjk;j + R′

0jjk;k)

≥ −
∑
k

[
|H | +

√
n− 1

n
(S − nH2)

]√∑
j

R′2
0kjk;j +

√∑
j

R′2
0jjk;k




≥ −2
√
n

[
|H | +

√
n− 1

n
(S − nH2)

]
|∇R′|,

we obtain∑
i,j,k

(R′
0kik;j + R′

0ijk;k)hij ≥ − 2√
n

[
|H | +

√
n− 1

n
(S − nH2)

]
c3. (3.7)

By (3.4)and condition (∗), we have

−

∑

i,j

nHhijR
′
0ij0 + S

∑
k

R′
0k0k




=−
∑
k

nHλk

(
R′

0kk0−S
∑
k

R′
0kk0

)
=
∑
k

(S−nHλk)R
′
0kk0 =

∑
k

(S − nHλk)
c1

n
.

Hence it follows that

−

∑

i,j

nHhijR
′
0ij0 + S

∑
k

R′
0k0k


 = c1(S − nH2). (3.8)

Since

−
∑
i,j,k,l

(hijhklR
′
lijk + hlihijR

′
lkjk)

= −
∑
j,k

(λjλkR
′
kjjk − λ2

kR
′
kjjk) = −

∑
j,k

(λjλk − λ2
k)R

′
kjjk

= 1

2

∑
j,k

(λj − λk)
2R′

kjjk ≥ c2

2

∑
j,k

(λj − λk)
2,

we obtain

−
∑
i,j,k,l

(hijhklR
′
lijk + hlihijR

′
lkjk) ≥ c2

2

∑
j,k

(λj − λk)
2 = c2(nS− n2H2). (3.9)

Thus, substituting(3.7)–(3.9)into (3.3), we can prove the following lemma.
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Lemma 1. LetM ′ be an(n+ 1)-dimensional Lorentz space satisfying the condition(∗∗).
If M is a space-like hypersurface with constant mean curvature H inM ′, then we have

1

2
/S ≥ − 2√

n

[
|H | +

√
n− 1

n
(S − nH2)

]
c3

+(2nc2 + c1)(S − nH2)+ (S2 − nHh3). (3.10)

In particular, if M ′ is locally symmetric, we have

1

2
/S ≥ (2nc2 + c1)(S − nH2)+ (S2 − nHh3). (3.11)

4. Proofs of Theorems

This section presents proofs of our theorems.

Proof of Theorem 1. SinceM ′ is an(n+1)-dimensional locally symmetric Lorentz space
satisfying the condition (∗), that is, for constantsc1 andc2, we have

K′(u, v) = −c1

n
(4.1)

for any space-like vectoru and any time-like vectorv and

K′(u1, u2) ≥ c2 (4.2)

for any space-like vectorsu1 andu2. Hence, we have, from(3.11)

1

2
/S ≥ (2nc2 + c1)(S − nH2)+ (S2 − nHh3). (4.3)

LetB =∑i µ
2
i andB3 =∑i µ

3
i . We have

B = S − nH2, B3 = h3 − 3HB − nH3. (4.4)

Hence, we have

1

2
/B ≥ (2nc2 + c1)B + (B + nH2)2 − nH(B3 + 3HB + nH3), (4.5)

becauseH is constant.
Let a1, . . . , an be real numbers satisfying

∑
i ai = 0 and

∑
i a

2
i = B, then we can prove∣∣∣∣∣

∑
i

a3
i

∣∣∣∣∣ ≤ n− 2√
n(n− 1)

B3/2, (4.6)

and the equality holds if and only if at leastn− 1 of theai’s are equal.
Therefore, we infer

1

2
/B ≥ B

{
B − n− 2√

n(n− 1)
n|H |B1/2 + nc− nH2

}
, (4.7)
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wherec = 2c2 + (c1/n). SinceM ′ satisfies the condition (∗) andM has constant mean
curvature, from(2.13), we know that the Ricci curvature ofM is bounded from below. Since
we do not know whetherS is bounded yet, we consider a functionF defined by, for any
positive constanta, F = −1/(

√
B + a). We know thatF is bounded because ofB ≥ 0.

According to the Generalized Maximum Principle of Omori[16] and Yau[21] in Section 2,
for anyεm > 0, there exists a pointpm ∈ M such that

/F(pm) < εm, |∇F |(pm) < εm, supF − εm < F(pm). (4.8)

Since

∇iF = 1

2

∇iB
(B + a)3/2

, /F = 1

2

/B

(B + a)3/2
− 3

4

|∇B|2
(B + a)5/2

,

we have

|∇F | = 1
2|F |3|∇B|,

and

1
2|F |4/B = |F |/F + 3|∇F |2.

From(4.8), we infer

1
2|F(pm)|4/B(pm) < |F(pm)|εm + 3ε2

m.

For any positive constant 0< ε < 1, lettingεm → 0, we know that there exists a positive
integerm0 such that whenm > m0, |F(pm)|εm+3ε2

m < ε becauseF is a bounded function.
According to(4.7)and the above inequalities, we infer

(1 − ε)B2(pm)− n− 2√
n(n− 1)

n|H |B3/2(pm)+ (nc− nH2 − 2aε)B(pm)− a2ε < 0.

Thus, we know that{B(pm)} is a bounded sequence. Since limm→∞F(pm) = supF =
−inf (1/

√
B + a) = −(1/√supB + a), we have limm→∞B(pm) = supB from the defini-

tion of F . Hence,B is bounded. Sincea andε are any positive constants, we infer

supB

{
supB − n− 2√

n(n− 1)
n|H |supB1/2 + nc− nH2

}
≤ 0. (4.9)

If n2H2 < 4(n− 1)c holds, then we havec > 0 and

supB − n− 2√
n(n− 1)

n|H |supB1/2 + nc− nH2 > 0.

Hence, we obtain supB = 0, that is,B ≡ 0. Thus, we infer thatS ≡ nH2 andM is totally
umbilical.

If n2H2 = 4(n− 1)c holds, then we havec ≥ 0 and

supB − n− 2√
n(n− 1)

n|H |supB1/2 + nc− nH2

=
(

supB1/2 − n− 2

2
√
n(n− 1)

n|H |
)2

≥ 0.
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Hence, from(4.9), we have supB = 0, that is,B ≡ 0 if supB1/2 �= (n−2)/(2
√
n(n− 1))n

|H |. Thus, we have that eitherB ≡ 0, that is,S ≡ nH2 andM is totally umbilical, or
supB1/2 = (n− 2)/(2

√
n(n− 1))n|H |, namely, supS = nc. Thus, we complete the proof

of (2) in Theorem 1.
If n2H2 > 4(n− 1)c andc < 0 hold, we know

supB − n− 2√
n(n− 1)

n|H |supB1/2 + nc− nH2

= (supB1/2 − B
1/2
min)(supB1/2 − B

1/2
max),

where B1/2
min = ((n − 2)n|H | − n

√
n2H2 − 4(n− 1)c)/2

√
n(n− 1) and B1/2

max =
((n − 2)n|H | + n

√
n2H2 − 4(n− 1)c)/2

√
n(n− 1). Since B1/2

min = ((n − 2)n|H |
− n
√
n2H2 − 4(n− 1)c)/2

√
n(n− 1) < 0 holds whenc < 0, from (4.9), we infer ei-

ther supB = 0, in this case,M is totally umbilical, or 0< supB1/2 ≤ ((n − 2)n|H | +
n
√
n2H2 − 4(n− 1)c)/2

√
n(n− 1). Hence, we know that the assertion (3) inTheorem 1

is true fromS = B + nH2.
If n2H2 > 4(n− 1)c andc ≥ 0 hold, we also have

supB − n− 2√
n(n− 1)

n|H |supB1/2 + nc− nH2

= (supB1/2 − B
1/2
min)(supB1/2 − B

1/2
max).

(a) WhenH2 ≥ c, sinceB1/2
min = ((n−2)n|H |−n

√
n2H2 − 4(n− 1)c)/2

√
n(n− 1) ≤ 0

holds, from(4.9), we infer either supB = 0, in this case,M is totally umbilical, or
0< supB1/2 ≤ ((n− 2)n|H | + n

√
n2H2 − 4(n− 1)c)/2

√
n(n− 1).

(b) WhenH2 < c, we haveB1/2
min = ((n−2)n|H |−n

√
n2H2 − 4(n− 1)c)/2

√
n(n− 1) >

0. Hence, we have, from(4.9), supB = 0, in this case,M is totally umbilical, orB1/2
min ≤

supB1/2 ≤ B
1/2
max. Thus, we infer that the assertion (4) inTheorem 1is true because of

S = B + nH2.

If S ≡ n/2(n − 1)[n2H2 − 2(n − 1)c + (n − 2)|H |{n2H2 − 4(n − 1)c}1/2] holds, we
know that these inequalities in the proof ofLemma 1and(4.6)are equalities andS > nH2.
Hence, we haven2H2 ≥ 4(n − 1)c from (1) in Theorem 1. Thus, we can infer thatn − 1
of the principal curvaturesλi are equal. Since the mean curvatureH is constant andS is
constant, we infer that principal curvatures are constant onM. Thus,M is an isoparametric
hypersurface with two distinct principal curvatures one of which is simple. This completes
the proof ofTheorem 1. �

Proof of Theorem 2. According to Gaussequation (2.12), we have

Rjkkj = R′
jkkj − (hjjhkk − hjkhkj) = R′

jkkj − hjjhkk = R′
jkkj − λjλk.

Hence, we obtain

R′
jkkj = Rjkkj + λjλk. (4.10)



244 J. Ok Baek et al. / Journal of Geometry and Physics 49 (2004) 231–247

Therefore

−2
∑
i,j,k,l

hijhkl(R
′
lijk − hlihijR

′
lkjk)

= −2
∑
j,k

(λjλkR
′
kjjk − λ2

kR
′
kjjk) = −2

∑
j,k

(λjλk−λ2
k)R

′
kjjk=

∑
j,k

(λj−λk)2R′
kjjk

= 1

2

∑
j,k

(λj − λk)
2R′

kjjk + 1

2

∑
j,k

(λj − λk)
2(Rkjjk + λjλk)

≥ c2

2

∑
j,k

(λj − λk)
2 + 1

2

∑
j,k

(λj − λk)
2(Rkjjk + λjλk). (4.11)

By making use of the same proof as in the proof ofLemma 1, we have

1

2
/S ≥ (nc2 + c1)(S − nH2)+ (S2 − nHh3)+ 1

2

∑
j,k

(λj − λk)
2(Rkjjk + λjλi).

(4.12)

Since the sectional curvature ofM is not less than−(c2 + c1/n), we have

1

2

∑
j,k

(λj − λk)
2(Rkjjk + λjλi)

≥ −1

2
(c2 + c1

n
)
∑
j,k

(λj − λk)
2 + 1

2

∑
j,k

(λj − λk)
2λjλk

= −
(
c2 + c1

n

)
(nS− n2H2)+ (nHh3 − S2). (4.13)

Thus, we infer, from(4.12) and (4.13)

1

2
/S≥(nc2 + c1)(S − nH2)+ (S2 − nHh3)+ 1

2

∑
j,k

(λj − λk)
2(Rkjjk + λjλi) ≥ 0.

(4.14)

FromTheorem 1, we know thatS is bounded. Applying the Generalized Maximum Principle
to S, we have that there exists a point sequence{pm} ⊂ M such that

lim sup
m→∞

/S(pm) ≤ 0, lim
m→∞|∇S|(pm) = 0, lim

m→∞S(pm) = supS. (4.15)

Hence, we have

lim
m→∞

∑
j,k

(λj − λk)
2
{
Rkjjk +

(
c2 + c1

n

)}
(pm) = 0, (4.16)

and

lim
m→∞

∑
j,k

(λj − λk)
2R′

kjjk = c2 lim
m→∞

∑
j,k

(λj − λk)
2. (4.17)
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Since the functionS =∑j λ
2
j is bounded,{λj(pm)} is a bounded sequence for anyj. Thus,

we can assume

lim
m→∞λj(pm) = λj0 (4.18)

for any j, if necessary, we can take a subsequence of{λj(pm)}. Hence, from(4.10) and
(4.17), we have

lim
m→∞

∑
j,k

(λj − λk)
2Rkjjk(pm) = lim

m→∞
∑
j,k

(λj − λk)
2(c2 − λjλk)(pm). (4.19)

Therefore, we infer, from(4.16) and (4.19)

lim
m→∞

∑
j,k

(λj − λk)
2(c − λjλi) = 0. (4.20)

If λj0 �= λk0, from (4.17), we have

lim
m→∞(c2 − λjλk)(pm) = lim

m→∞(R
′
kjjk − λjλk)(pm)

= lim
m→∞Rkjjk(pm) ≥ −

(
c2 + c1

n

)
.

Hence, in this case, we obtain

lim
m→∞(c − λjλi)(pm) ≥ 0. (4.21)

Thus,(4.20) and (4.21)yield, for anyi andj

lim
m→∞(−λiλj(pm)+ c)(λi − λj)

2(pm) = 0. (4.22)

By (4.18) and (4.22)we get

(−λi0λj0 + c)(λi0 − λj0)
2 = 0 (4.23)

for anyi0 andj0. By the simple algebraic calculation, it is clear that at most two of{λj0}’s are
distinct. If all of {λj0}’s coincides with each other, then, from(4.21), we havec ≥ λ2

j0
≥ 0.

If two of the {λj0}’s are distinct, which are denoted byλ andµ (λ �= µ). By (4.23), they
satisfy

−λµ+ c = 0. (4.24)

Now let us denote byr and s the number of indicesλj(pm) → λ andλj(pm) → µ,
respectively. Then we want to assert thatr = 1 or s = 1.

In fact, if r ≥ 2 ands ≥ 2 hold, it follows fromr ≥ 2 that there are distinct indicesi and
j such thatλi(pm) → λ andλj(pm) → λ (m → ∞) and hence we have

lim
m→∞(−λiλj + c) = −λ2 + c, for i �= j.

By (4.18) and (4.21), we obtainc ≥ λ2 ≥ 0. Similarly, we havec ≥ µ2 ≥ 0, which implies
that

c2 ≥ λ2µ2.
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On the other hand, since we see thatc = λµ in (4.24), it impliesλ2 = µ2 = c. Furthermore,
it turns out to beλ = ±µ. Because they are distinct, it yieldsc = λµ = −λ2. Hence we
obtainλ = µ = 0. This is impossible because ofλ �= µ. Thus, our assertion is true.

Without loss of generality, we assumer = 1. Sincen > 2, we haves ≥ 2 and by the
above discussion we obtain 0< µ2 < c. This finishes the proof of the first part of assertions
in Theorem 2.

Next, we shall prove the second part of the assertions inTheorem 2. From the above
assertion, together with(4.24)it follows thatλ2 > c. It is clear that we may assume that the
mean curvatureH is positive. Thenλ andµ are positive because ofc > 0 and(4.24). By
definingc3 andc4 byλ2 = c−c3 andµ2 = c−c4, respectively, we havec3 < 0,0< c4 < c

and

(c − c3)(c − c4) = c2, i.e.,
1

c3
+ 1

c4
= 1

c
. (4.25)

Since the mean curvatureH is constant, we obtain

nH = λ+ (n− 1)µ = (c − c3)
1/2 + (n− 1)(c − c4)

1/2, λµ = c.

Hence, we have

λ2 − nHλ+ (n− 1)c = 0.

SinceH2 ≥ c holds, we conclude

λ = c

µ
= nH +

√
n2H2 − 4(n− 1)c

2
, and µ = nH −

√
n2H2 − 4(n− 1)c

2(n− 1)
.

(4.26)

Hence, we infer

S = λ2 + (n− 1)µ2

= 1

2(n− 1)
[n{n2H2 − 2(n− 1)c} + (n− 2)n|H |{n2H2 − 4(n− 1)c}1/2].

(4.27)

It is a contradiction. Therefore

λj0 = λ

for anyj. This implies

supS = nH2.

FromS − nH2 = B ≥ 0, we haveS ≡ nH2. Hence,M is totally umbilical. �
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